Top 10 Things to Consider When Selecting a Digitizer/Oscilloscope

The modern day digital storage oscilloscope is dramatically different from the cathode ray oscilloscope German scientist Karl Ferdinand Braun invented in 1897. Technology advances continue to provide new features that make the oscilloscope more useful to engineers, but one of the most significant transformations of the oscilloscope was its transition into the digital domain, which enabled powerful features such as digital signal processing and waveform analysis. Digital oscilloscopes today include a high-speed, low-resolution (typically 8 bits) analog-to-digital converter (ADC), defined controls and display, and a built-in processor to run software algorithms for common measurements.

Since oscilloscopes are PC-based, you have the advantage of being able to define your instrument functionality in software. As a result, you can use an oscilloscope not only for general measurements, but also for custom measurements, and even as a spectrum analyzer, frequency counter, ultrasonic receiver, or other instrument. With their open architecture and flexible software, oscilloscopes provide several advantages over traditional stand-alone oscilloscopes. When choosing an oscilloscope there are many considerations to keep in mind when selecting the instrument to fit your application.

This paper discusses the top 10 things you should keep in mind if you are considering a new digitizer/oscilloscop


MATsolutions' insight:

Technology advances continue to provide new features that make the oscilloscope more useful to us engineers.There are now many factors to take into consideration when choosing an instrument to fit your application. Here are the 10 most important ones.


Read Original Article